

DEMOCRITUS UNIVERSITY OF THRACE MSc in QUANTUM COMPUTING AND QUANTUM TECHNOLOGIES

Detailed course outlines.

Contents

Compulsory first semester courses: page 2 Compulsory second semester courses: page 10

Elective first semester courses: page 18 Elective second semester courses: page 51

Master's Thesis, third semester: page 75

COURSE OUTLINE

L. GENERAL					
SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUA	TE, LEVEL 7			
COURSE CODE	QY1		SEMESTER	WINT	ER (1 st)
COURSE TITLE	QUANTUM CO	MPUTING			
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.		he whole	TEACHING HOURS PEF WEEK	t	ECTS CREDITS
			3		9
Please, add lines if necessary. Teaching the course are described in section 4.	methods and orgo	nization of			
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AR	EA			
PREREQUISITES:	None				
TEACHING & EXAMINATION	English				
LANGUAGE:					
COURSE OFFERED TO ERASMUS	No				
STUDENTS:					
COURSE URL:	https://eclass.	duth.gr/cour	ses/1031595/		
	-	-			

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand two-state quantum systems
- To understand the qubit theoretical model and its Bloch sphere representation
- To compute the states of quantum registers
- To understand the nature and use of quantum gates
- To understand the principle of quantum computation and its relation to Schrödinger equation.
- To design quantum circuits and execute quantum computations
- To use quantum simulators
- To program real quantum computers
- To understand the quantum circuit descriptions of quantum algorithms

General Skills

Name the desirable general skills upon successful co	ompletion of the module
Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	

Search, analysis and synthesis of data and information Autonomous work Working in an international environment Critical thinking Adaptation to new situations

3. COURSE CONTENT

1. Introduction to quantum computers and quantum computing

Two-state quantum systems

The quantum bit (qubit) and its Bloch sphere representation

Quantum registers

Quantum gates

Quantum computing and quantum circuits

Deutsch quantum algorithm

Quantum computer simulators and programming of quantum computers

Deutsch-Jozsa quantum algorithm

Berstein-Vasirani quantum algorithm

Entanglement and teleportation

The BB84 Quantum Key Distribution (QKD) protocol

Simon's quantum algorithm

4. LEARNING & TEACHING METHODS - EVALUATION

4. LEAKINING & TEACHING METHOL	JJ - EVALUATION	
TEACHING METHOD	Live distance learning.	
Face to face, Distance learning, etc.		
USE OF INFORMATION &	Digital slides	
COMMUNICATIONS TECHNOLOGY	Microsoft Teams platform	
(ICT)	Eclass	
Use of ICT in Teaching, in Laboratory Education, in Communication with students	QCS and Qiskit quantum sin	nulators
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	39
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Bibliographical research and study	94
project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload	Assignments during the course	40
per semester complies to ECTS standards.	Final assignment and exam	52

	Total	225
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about the course assessment and how students are informed	The assessment language is Solving written assignment Reports. Problem solving.	C C

5. SUGGESTED BIBLIOGRAPHY

1. R.P. Feynman, R.B. Leighton and M. Sands, "The Feynman Lectures on Physics, vol. III Quantum Mechanics", Pearson, 2012.

- 2. D. Mc Mahon, "Quantum Computing Explained", Wiley-Interscience, 2008
- 3. V. Silva "Practical Quantum Computing for Developers", Apress, 2018
- 4. E. Riefell and W. Polak, "Quantum Computing a gentle introduction", The MIT Press, 2011
- 5. N. D. Mermin, "Quantum Computer Science", Cambridge University Press, 2007
- 6. M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information: 10th Anniversary Edition", Cambridge University Press, 2011

Alternative ways of examining a course in emergency situations

Teacher (full name):	Ioannis Karafyllidis
Contact details:	Email: <u>ykar@ee.duth.gr</u> , Telephone: 30 25410 79548
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(1) Please write YES or NO

- (2) Note down the evaluation methods used by the teacher, e.g.
 - written assignment or/and exercises
 - written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.
- (3) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF EN	GINEERING		
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES	POST-GRADUA	TE, LEVEL 7		
COURSE CODE	QY2		SEMESTER	WINTER (1 ST)
COURSE TITLE	QUANTUM DE	/ICES		
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.		e whole	TEACHING HOURS PER WEEK	
			3	9
Please, add lines if necessary. Teaching the course are described in section 4.	methods and orga	nization of		
	methods and organ	-		
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific	5	-		
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC ARE	-		
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION	SCIENTIFIC ARE	-		

7. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the properties and operation of semiconducting quantum devices.
- To understand the principles of operation of superconducting devices
- To understand the Josephson effect
- To design and simulate Josephson junctions, squid devices and superconducting quantum circuits
- To understand the properties and operation of molecular magnets and organic molecules
- To understand and calculate spin operators and their time evolution
- To identify proper molecular spin systems for spin-based QC

General Skills

Name the desirable general skills upon successful co	ompletion of the module
Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search analysis and synthesis of data and info	rmation

Search, analysis and synthesis of data and information Autonomous work

Critical thinking Adaptation to new situations

8. COURSE CONTENT

- Semiconducting devices:
 - o quantum wells
 - 2DEG devices (HEMT)
 - o quantum dots
 - Coulomb blockade
 - Single Electron Transistor (SET)
 - o Tunnel FET
- Superconducting devices:
 - Introduction to the superconductivity
 - Josephson effect Josephson junctions
 - o superconducting electronic circuits
 - dc and ac squid sensors
- Molecular magnets:
 - definition (description of the compounds)
 - o organic molecules
 - transition metal and rare earth ions mono-and poly-nuclear compounds
 - o molecular spins (endohedral fullerenes and/or encapsulated atoms)
 - o impurities in solids
- Spin based QC
 - o Stern-Gerlach experiment and the quantum measurement
 - o spin operators and their algebra
 - o the spin Hamiltonian of two coupled spins and its time evolution
 - Breit-Rabi energy levels of atomic hydrogen

9. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.	
Face to face, Distance learning, etc.		
USE OF INFORMATION &	Digital slides	
COMMUNICATIONS TECHNOLOGY	Microsoft Teams platform	
(ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Eclass	
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester
described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis,	Lectures	39
Tutoring, Internship (Placement), Clinical	Bibliographical research	94
Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	and study	
project. Etc.	Assignments during the	40
The supervised and unsupervised workload per activity is indicated here, so that total workload	course	
per semester complies to ECTS standards.	Final assignment and	52
	exam	

	Total	225
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about the course assessment and how students are informed	The assessment language is Solving written assignments Reports. Problem solving.	0

10. SUGGESTED BIBLIOGRAPHY

M. Premaratne and G. P. Agrawal, Theoretical Foundations of Nanoscale Quantum Devices, Cambridge University Press, 2021.

M. Razeghi, Technology of Quantum Devices, Springer, 2009.

F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies, Spinger, 2011

S. T. Ruggiero and D. A. Rudman, Superconducting Devices, Academic Press, 2013

R. Combescot, Superconductivity: An Introduction, Cambridge University Press, 2022

K. K Likharev, Dynamics of Josephson junctions and circuits, Gordon and Breach Science Publishers, 1986

D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, 2006

J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, WILEY 2007

John J. L. Morton, Brendon W. Lovett, Hybrid solid state qubits: the powerful role of electron spins, Review https://doi.org/10.48550/arXiv.1103.0418

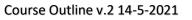
Alternative ways of examining a course in emergency situations

Teacher (full name):	Panagiotis Dimitrakis (Coordinator), Michalis Pissas, Ioannis Sanakis, George Mitrikas
Contact details:	E-mail: <u>p.dimitrakis@inn.demokritos.gr</u> , Telephone: T: +30-210-650- 3118
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(4) Please write YES or NO

(5) Note down the evaluation methods used by the teacher, e.g.

written assignment or/and exercises


written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(6) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

11. GENERAL				
SCHOOL	SCHOOL OF E	NGINEERING		
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES	POST-GRADU	ATE, LEVEL 7		
COURSE CODE	QY3		SEMESTER	SPRING (2 nd)
COURSE TITLE	QUANTUM AI	GORITHMS A	ND QUANTUM	I INFORMATION
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.		TEACHING HOURS PEF WEEK		
· · · · · · · · · · · · · · · · · · ·			3	9
<i>Please, add lines if necessary. Teaching the course are described in section 4.</i>	methods and org	anization of		
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AR	REA		
PREREQUISITES:	QY1 – Quantu	រm Computinខ្ល	5	
TEACHING & EXAMINATION LANGUAGE:	English			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:	https://eclass	.duth.gr/cour	ses/1031596/	

12. LEARNING OUTCOMES

Pleas	ning Outcomes e describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of ourse.
Aft	er the successful completion of this course, the post-graduate students will be able:
•	To understand the expression of the Postulates of Quantum Mechanics in Quantum Computing
•	To use quantum error correcting codes
•	To understand and use Grover's quantum algorithm
•	To understand and use the Quantum Fourier Transform
•	To understand and use Shor's quantum algorithm
•	To analyze physical quantum bits using the quantum un-harmonic oscillator.
•	To understand and use quantum game theory and quantum games
•	To understand and use quantum walks as a model of quantum computation
•	To write the Hamiltonians of specific problems
•	To develop novel quantum algorithms
•	To use the density matrix formulation
•	To understand measures of entanglement and compute entanglement.

- To understand and use von Newmann entropy
- To understand the relation of quantum information and the free energy

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information, Project design and management ICT Use Equity and Inclusion Adaptation to new situations Respect for the natural environment Decision making Sustainability Autonomous work Demonstration of social, professional and moral responsibility and Teamwork sensitivity to gender issues Working in an international environment Critical thinking Working in an interdisciplinary environment Promoting free, creative and inductive reasoning Production of new research ideas Search, analysis and synthesis of data and information Autonomous work

13. COURSE CONTENT

Adaptation to new situations

Critical thinking

- 1. The Postulates of Quantum Mechanics in Quantum Computing
- 2. Quantum mechanics for quantum computing and quantum information
- 3. Quantum Error Correcting Codes
- 4. Grover's quantum algorithm

Working in an international environment

- 5. Applications and quantum circuits of Grover's quantum algorithm
- 6. Quantum Fourier transform
- 7. Quantum phase estimation
- 8. Shor's quantum algorithm
- 9. Quantum games and quantum cellular automata
- 10. Quantum walks
- 11. Quantum circuits for quantum walks and applications
- 12. Von Newmann entropy and measures of entanglement
- 13. Quantum information and free energy

14. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.			
Face to face, Distance learning, etc.	Digital alidad			
	Digital slides			
(ICT)	Microsoft Teams platform			
Use of ICT in Teaching, in Laboratory	Eclass			
Education, in Communication with students	QCS and Qiskit quantum sin	nulators		
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are				
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	39		
Exercise, Bibliographic research & analysis,				
Tutoring, Internship (Placement), Clinical	Bibliographical research	94		
Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	and study			
project. Etc.				
	Assignments during the	40		
The supervised and unsupervised workload per	course			
activity is indicated here, so that total workload per semester complies to ECTS standards.		52		
	Final assignment and	52		
	exam			

	Total	225
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about the course assessment and how students are informed	The assessment language is Solving written assignments Reports. Problem solving.	C C

15. SUGGESTED BIBLIOGRAPHY

- 1. M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information: 10th Anniversary Edition", Cambridge University Press, 2011
- 2. I. Djordjevic, "Quantum Information Processing and Quantum Error Correction", Academic Press, 2012.
- 3. L. I. Schiff, "Quantum Mechanics", McGraw-Hill, 1988
- 4. J. von Newmann, "Mathematical Formulation of Quantum Mechanics", Princeton University Press, 1983
- 5. R. Portugal, "Quantum walks and search algorithms", Springer, 2013
- 6. G. G. LaGuardia, "Quantum error correction", Springer, 2020
- 7. D. D. Stancil and G. T. Byrd, "Principles of superconducting quantum computers", Wiley, 2022.
- 8. A. S. Sergienko, "Quantum communications and cryptography", Taylor & Francis, 2006
- 9. G. Jaeger, "Quantum Information", Springer, 2007

Alternative ways of examining a course in emergency situations

Teacher (full name):	Ioannis Karafyllidis
Contact details:	Email: <u>ykar@ee.duth.gr</u> , Telephone: 30 25410 79548
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(7) Please write YES or NO

(8) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.
- (9) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

16.	GENERAL

SCHOOL	SCHOOL OF E	SCHOOL OF ENGINEERING		
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES	POST-GRADU	ATE, LEVEL 7		
COURSE CODE	QY4 SEMESTER SPRING (2 nd)			SPRING (2 nd)
COURSE TITLE	QUBIT DEVICE	ES		
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits course, then please indicate the teach corresponding ECT.	distinct parts of the course e.g. TEACHING ts are awarded to the whole HOURS PER ECTS CREDITS ching hours per week and the WEEK			
,			3	9
Please, add lines if necessary. Teaching the course are described in section 4.	methods and org	anization of		
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AF	REA		
PREREQUISITES:	None			
TEACHING & EXAMINATION LANGUAGE:	English			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:	https://eclass.duth.gr/courses/			

17. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the physics and operation of quantum devices implementing qubits.
- To understand the operation of superconducting resonators
- To understand CMOS qubits
- To understand the physics and operation of quantum gates
- To design and simulate qubit devices and quantum circuits using Qiskit metal
- To design quantum processors

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and inform	mation
Autonomous work	

Critical thinking

Adaptation to new situations

18. COURSE CONTENT

- Superconducting qubits, Flux, phase, charge and Transmon qubits
- Superconducting resonators
- CMOS qubits (QD FET P-dopants in Si devices)
- Nitrogen vacancies in Diamond
- Atom traps
- Topological insulators
- Topological quantum bits
- Physics of quantum gates
- Quantum circuits
- Realization of quantum algorithms with molecular nanomagnets
- Spin based quantum gates

19. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Live distance learning.			
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Digital slides Microsoft Teams platform Eclass Qiskit metal simulator			
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester		
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	39		
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Bibliographical research and study	94		
project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload	Assignments during the course	40		
per semester complies to ECTS standards.	Final assignment and exam	52		
	Total	225		
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	Problem solving.			

Please indicate all relevant information about the course assessment and how students are informed

20. SUGGESTED BIBLIOGRAPHY

G. Chen, D. A. Church, B. G. Englert, C. Henkel, Quantum Computing Devices: Principles, Designs, and Analysis, Chapman and Hall/CRC, 2006

D. D. Stancil and G. T. Byrd, Principles of Superconducting Quantum Computers, Wiley, 2022

M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information: 10th Anniversary Edition", Cambridge University Press, 2011

F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies, Spinger, 2011

M. H. Devoret, A. Wallraff, and J. M. Martinis, "Superconducting Qubits: A Short Review", <u>http://arxiv.org/abs/cond-mat/0411174v1</u>

Wolfgang Harneit, Quantum Computing with Endohedral Fullerenes, Review <u>https://doi.org/10.48550/arXiv.1708.09298</u>

Gary Wolfowicz & John J.L. Morton, Pulse Techniques for Quantum Information Processin (https://www.ucl.ac.uk/quantum-spins/sites/quantum-spins/files/paper90.pdf)

Alternative ways of examining a course in emergency situations

Teacher (full name):	Panagiotis Dimitrakis (Coordinator), Michalis Pissas, Ioannis Sanakis, George Mitrikas
Contact details:	E-mail: <u>p.dimitrakis@inn.demokritos.gr</u> , Telephone: T: +30-210-650- 3118
Supervisors: (1)	No
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(10) Please write YES or NO

(11) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(12) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF F	SCHOOL OF ENGINEERING		
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES		POST-GRADUATE, LEVEL 7		
COURSE CODE				
				white
COURSE TITLE	Optical and Q	uantum Comi	munications	
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits	stinct parts of the	5	TEACHING HOURS PEF	
course, then please indicate the teach corresponding ECT	ching hours per week and the WEEK			
	2		6	
Please, add lines if necessary. Teaching the course are described in section 4.	5 5 5			
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	Scientific Area, Skill Development			
PREREQUISITES:	None			
TEACHING & EXAMINATION LANGUAGE:	English			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:	https://eclass.duth.gr/courses/			

22. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the nature of light
- To understand the operation of key components and modules of optical systems.
- To understand and use optical signal processing.
- To understand and use optical communications systems.
- To understand optical quantum communications

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and infor	rmation
ICT Use	
Autonomous work	
Teamwork	
Project Design and Management	
Critical thinking	

Adaptation to new situations

23. COURSE CONTENT

Essential basics: Wave nature of light, E/M waves, physical optics, optical waveguiding. Key components and modules: Optical fiber (operation, characteristics, types), passive elements (couplers, isolators, filters, multiplexers/demultiplexers).

Active devices (sources, modulators, amplifiers, photodetectors).

Optical signal processing: Optical nonlinearities, nonlinear media, modern switching and limitations, optical switches and gates, applications to sequential and combinational circuits.

Optical interconnects, photonic integration.

Optical communications systems: Basic parts, technological evolution, performance limitations and characterization, design of real systems.

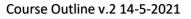
Optical communications networks: Topologies, Wavelength Division Multiplexing, optical data centers, optical access networks, passive optical networks.

Optical quantum communications: Concept, infrastructure, networks, limitations, challenges.

1. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD				
Face to face, Distance learning, etc.	Live distance learning.			
USE OF INFORMATION &				
COMMUNICATIONS TECHNOLOGY				
(ICT)				
Use of ICT in Teaching, in Laboratory Education, in Communication with students				
	A stinites			
The ways and methods of teaching are	Activity	Workload/semester		
described in detail.	Lestures	26		
Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Bibliographic research & analysis,	Diblio suo abiant anno anab	50		
Tutoring, Internship (Placement), Clinical	Bibliographical research	50		
Exercise, Art Workshop, Interactive learning,	and study			
Study visits, Study / creation, project, creation, project. Etc.				
	Assignments during the	40		
The supervised and unsupervised workload per	course			
activity is indicated here, so that total workload				
per semester complies to ECTS standards.	Final assignment and	34		
	exam			
	exam			
	Total	150		
	Total	150		
STUDENT EVALUATION				
Description of the evaluation process				
	The assessment language is	English.		
Assessment Language, Assessment Methods,		-		
Formative or Concluding, Multiple Choice Test,	Solving written assignment	gnments.		
Short Answer Questions, Essay Development				
Questions, Problem Solving, Written	Proplem solving			
Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report,	Ũ			
resentation in addience, Laboratory Report,				

Clinical examination of a patient, Artistic interpretation, Other/Others


Please indicate all relevant information about the course assessment and how students are informed

2. SUGGESTED BIBLIOGRAPHY

1. P. Lampropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information, Springer, 2007

2. M. Benslama, A. Benslama and S. Aris, Quantum Communications in New Telecommunication Systems, Willey, 2017

3. A. V. Sergienko, Quantum Communications and Cryptography, Taylor & Francis, 2006.

Alternative ways of examining a course in emergency situations

Teacher (full name):	Kyriakos Zoiros
Contact details:	Email: kzoiros@ee.duth.gr, Telephone: 2541079595
Supervisors: (1)	Νο
Evaluation methods: (2)	Assignments and Final Exam
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(13) Please write YES or NO

(14) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(15) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

24.	GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7			
COURSE CODE	QE2 SEMESTER WINTER (1 ST)			WINTER (1 ST)
COURSE TITLE	Computation	al Biology		
lectures, labs etc. If the ECTS Credits are awarded to the whole			TEACHING HOURS PEF WEEK	
			2	6
Please, add lines if necessary. Teaching the course are described in section 4.	-			
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AF	REA		
PREREQUISITES:	None			
TEACHING & EXAMINATION LANGUAGE:	English			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:				

25. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand basic biological principles
- To understand basic bioinformatical principles
- To perform bioinformatical analysis
- To translate biological questions into bioinformatics

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	

26. COURSE CONTENT

Basics for DNA, RNA, proteins

Advanced for DNA, RNA, proteins

Alignment Data bases

- Epigenetics
- Gene expression
- Gene expression analysis
- **Transcription factors**
- Chromatin structure and analysis
- **Biological networks**
- Evolution and phylogenetic analysis
- Introduction to structural biology
- Protein folding

27. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Live distance learning.			
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Digital slides Microsoft Teams platform Eclass			
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester		
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	30		
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Bibliographical research and study	70		
project. Etc.	Assignments during the	50		
The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards.	Course	150		
	Total	150		
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about	The assessment language is Solving written assignments Reports. Problem solving.	-		
please indicate all relevant information about the course assessment and how students are informed				

28. SUGGESTED BIBLIOGRAPHY

- 1. Bioinformatics and Functional Genomic. Eudoxus: 86054818. Academic publications.
- 2. Recombinant DNA. Eudoxus: 2625. Academic publications.
- 3. Computational Biology. Eudoxus: 320114. Hellenic Academic Books. Kallipos repository

Alternative ways of examining a course in emergency situations

Teacher (full name):	Petros Kolovos
Contact details:	pkolovos@mbg.duth.gr and 2551030385
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(16) Please write YES or NO

(17) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(18) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QE3 SEMESTER Winter			nter	
COURSE TITLE	Nanoelectronics				
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits course, then please indicate the teach corresponding ECT	TEACHING HOURS PER WEEK		ECTS CREDITS		
			2		6
<i>Please, add lines if necessary. Teaching the course are described in section 4.</i>	methods and org	anization of			
COURSE TYPE Background, General Knowledge, Scientific					
Area, Skill Development					
	None				
Area, Skill Development	None English				
Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION					

30. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the quantum properties of nanomaterials
- To understand the properties and operation of spintronic devices
- To understand the physics and operation of quantum dots
- To understand quantum transport and spin dependent electron transport
- To understand the concept and properties of molecular electronics
- To understand 2D nanomaterials

General Skills

Teamwork

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and info	rmation
ICT Use	
Autonomous work	

Project Design and Management

Critical thinking

Adaptation to new situations

31. COURSE CONTENT

- Quantum mechanical description of nanomaterials
- Nanoelectronic and spintronic devices
- Quantum dots, nanowires, nanopillars
- Quantum transport and tunneling effects
- Magnetoresistance
- Spin-dependent electron transport
- Molecular electronics
- Graphene and 2D nanomaterials.

3. LEARNING & TEACHING METHODS - EVALUATION

3. LEARINING & TEACHING METHON				
TEACHING METHOD	Live distance learning.			
Face to face, Distance learning, etc.				
USE OF INFORMATION &				
COMMUNICATIONS TECHNOLOGY				
(ICT)				
Use of ICT in Teaching, in Laboratory				
Education, in Communication with students				
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are				
described in detail.	Lectures	26		
Lectures, Seminars, Laboratory Exercise, Field				
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical	Bibliographical research	50		
Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning,				
Study visits, Study / creation, project, creation,	and study			
project. Etc.	Assignments during the	40		
	с с	-0		
The supervised and unsupervised workload per activity is indicated here, so that total workload	course			
per semester complies to ECTS standards.				
per semester comples to Lers standards.	Final assignment and	34		
	exam			
	Total	150		
STUDENT EVALUATION		•		
Description of the evaluation process				
	The assessment language is	English.		
Assessment Language, Assessment Methods,	 Solving written assi 	gnments		
Formative or Concluding, Multiple Choice Test,	-	Brittenio.		
Short Answer Questions, Essay Development	Reports.			
Questions, Problem Solving, Written	 Problem solving. 			
Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report,				
Clinical examination of a patient, Artistic				
interpretation, Other/Others				

4. SUGGESTED BIBLIOGRAPHY

informed

Please indicate all relevant information about the course assessment and how students are

A. Ghosh, Nanoelectronics: A Molecular View, World Scientific, 2016

T. T. Heikkilä, The Physics of Nanoelectronics: Transport and Fluctuation Phenomena at Low Temperatures, OUP Oxford, 2013

E. L. Wolf, Quantum Nanoelectronics: An Introduction to Electronic Nanotechnology and Quantum Computing, Wiley-VCH, 2015

Alternative ways of examining a course in emergency situations

Teacher (full name):	Panagiotis Dimitrakis (Coordinator), Michalis Pissas
Contact details:	E-mail: <u>p.dimitrakis@inn.demokritos.gr</u> , Telephone: T: +30-210-650- 3118
Supervisors: (1)	Νο
Evaluation methods: (2)	Assignments and Final Exam
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(19) Please write YES or NO

(20) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(21) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING			
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7			
COURSE CODE	QE4 SEMESTER Winter			Winter
COURSE TITLE	Quantum Solid-state Physics			
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits course, then please indicate the teach corresponding ECT	TEACHING HOURS PEF WEEK			
			2	6
Please, add lines if necessary. Teaching the course are described in section 4.	methods and org	anization of		
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	Scientific Area, Skill Development			
PREREQUISITES:	None			
TEACHING & EXAMINATION LANGUAGE:	English			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:	https://eclass.duth.gr/courses/			

33. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the quantum mechanical description of materials
- To understand the properties and physics of quantum confinement
- To understand semiconductor nanostructures
- To understand the quantum Hall effect
- To understand the hyperfine interactions and spin orbit coupling in materials
- To understand the basics of superconductivity
- To understand the static magnetic properties of materials
- To understand the dynamic magnetic properties including Rabi oscillations
- To understand the physical meaning of the two spin relaxation times, T1, T2
- To understand the possible spin relaxation mechanisms and processes

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning

Production of new research ideas

Search, analysis and synthesis of data and information ICT Use Autonomous work Teamwork Project Design and Management Critical thinking Adaptation to new situations

34. COURSE CONTENT

- Semiconductor nanostructures
- Quantum confinement
- Semiconductor heterostructures
- Quantum Hall effect
- Semiconductor/dielectric tunnel junctions
- Superconductivity and physics of superconductors
- Static Magnetic properties (Hyperfine interactions, Spin orbit coupling and single ion anisotropy, Exchange coupling)
- Dynamic Magnetic properties (Real and imaginary magnetic susceptibility, Spin Relaxation times, Rabi oscillations).

5. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Live distance learning.			
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory				
Education, in Communication with students TEACHING ORGANIZATION The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation, project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards.	Activity	Workload/semester		
	Lectures 26			
	Bibliographical research and study	50		
	Assignments during the course	40		
	Final assignment and exam	34		
	Total	150		
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions Problem Solving Written	The assessment language is English.Solving written assignments.Reports.			

Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about the course assessment and how students are informed

6. SUGGESTED BIBLIOGRAPHY

C. Kittel, Quantum Theory of Solids, Wiley, 1991

L. Kantorovich, Quantum Theory of the Solid State, Springer, 2004

P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, Wiley, 2016

Z. F. Ezawa, Quantum hall effects: recent theoretical and experimental developments, World Scientific, 2013

M. Tinkham, Introduction to Superconductivity, Second Edition McGraw-Hill, Inc, 1996.

D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, 2006, Oxford University Press

Sandra S. Eaton and Gareth R. Eaton, Relaxation Times of Organic Radicals and Transition Metal lons Biological Magnetic Resonance, Volume 19: Distance Measurements in Biological Systems by EPR, edited by Berliner et al. Kluwer Academic/Plenum Publishers, New York, 2000

J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, WILEY 2007

Alternative ways of examining a course in emergency situations

Teacher (full name):	Panagiotis Dimitrakis (Coordinator), Michalis Pissas, Ioannis Sanakis, George Mitrikas
Contact details:	E-mail: <u>p.dimitrakis@inn.demokritos.gr</u> , Telephone: T: +30-210-650- 3118
Supervisors: (1)	Νο
Evaluation methods: (2)	Assignments and Final Exam
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(22) Please write YES or NO

(23) Note down the evaluation methods used by the teacher, e.g.

written assignment or/and exercises

written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(24) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

35. GENERAL					
SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL A	ND COMPUTE	ER ENGINEERIN	IG	
LEVEL OF STUDIES	POST-GRADU	ATE, LEVEL 7			
COURSE CODE	QE5	SEMESTER WINTER (1 ST)			1 st)
COURSE TITLE	APPLIED QUANTUM MECHANICS				
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.		TEACHING HOURS PEF WEEK	R ECT	ECTS CREDITS	
· · · · · · · · · · · · · · · · · · ·	2			6	
Please, add lines if necessary. Teaching methods and organization of the course are described in section 4.					
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AREA				
PREREQUISITES:	None				
TEACHING & EXAMINATION LANGUAGE:	English				
COURSE OFFERED TO ERASMUS STUDENTS:	No				
COURSE URL:	https://eclass.duth.gr/courses				

36. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand basic features of quantum mechanics like Schrödinger's equation, operators, expectation values, probability density and probability current density, superposition principle, eigenvalues, and the uncertainty principle.
- To solve the time-independent Schrödinger equation for studying bound states in simple and complex potential wells, including problems with different effective masses and delta function potentials.
- To understand scattering in one dimension and use the time-independent Schrödinger equation for the calculation of transmission and reflection coefficients in simple and complex barriers, including problems with different effective masses and delta function potentials.
- To understand the propagation matrix method, resonant tunneling, the WKB approximation for tunneling, and the Kronig-Penney model
- To understand the algebraic method for the harmonic oscillator and use it for the quantization of different quantum systems
- To understand Landau states
- To understand how to treat an electron in a central potential and use it in applications of spherical "hard" potential and finite spherical potential, and for hydrogen-like systems.

- To understand the quantum mechanics of angular momentum, including spin and the addition of angular momenta
- To understand and use time-independent perturbation theory for non-degenerate and degenerate states and the sudden approximation
- To understand and use the variational method
- To understand and use WKB approximation for stationary states
- To understand identical particles, Pauli exclusion principle and the symmetry of the wavefunctions.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information, ICT Use Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Equity and Inclusion Respect for the natural environment Sustainability Demonstration of social, professional and moral responsibility and sensitivity to gender issues Critical thinking Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information Autonomous work Working in an international environment Critical thinking Adaptation to new situations

37. COURSE CONTENT

Basic features: Schrödinger's equation, operators, expectation values, probability density and probability current density, superposition principle, eigenvalues, uncertainty principle.

Free-particle, symmetric quantum wells, combination of infinite and finite-barrier potential wells.

Delta function potential, combination of delta function potentials and heterostructures or quantum wells, triangular potential.

Scattering in one dimension: transmission and reflection coefficients, tunneling in simple and complex barriers. The propagation matrix method.

Resonant tunneling, WKB approximation for tunneling. Periodic potential and the Kronig-Penney model.

More on operators, eigenstates and the measurement problem, Dirac notation. Harmonic oscillator: Algebraic method of the harmonic oscillator, creation and annihilation operators, and their application.

Stark effect in the harmonic oscillator, quantization of the LC circuit, quantization of lattice vibrations-phonons, free electron in a magnetic field - Landau states and connection to the semiclassical orbit.

Electron in a central potential: angular momentum, application to spherical "hard" potential and finite spherical potential, solution for hydrogen-like systems and applications in semiconductors.

Angular momentum, spin and addition of angular momenta.

Time-independent non-degenerate perturbation theory and applications.

Time-independent degenerate perturbation theory and applications, the sudden approximation and applications.

Variational method and WKB approximation for stationary states and their applications.

Identical particles, Pauli exclusion principle, the symmetry of the wavefunctions and applications.

38. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Live distance learning.			
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Digital slides Detailed digital notes Eclass Zoom Simple computer programs for applied quantum mechanics			
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation, project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards.	Lectures 26			
	Bibliographical research 60 and study			
	Assignments during the course	30		
	Final assignment and exam	34		
	Total	150		
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	The assessment language is English. Solving written assignments. Reports. Problem solving.			
Please indicate all relevant information about the course assessment and how students are informed				

39. SUGGESTED BIBLIOGRAPHY

1. A. F. J. Levi, "Applied Quantum Mechanics", 2nd edition, Cambridge, 2006

- 2. D. K. Ferry, "Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers", 3rd edition, CRC Press, 2021
- 3. D. A. B. Miller, "Quantum Mechanics for Scientists and Engineers", Cambridge, 2008
- 4. C. L. Tang, "Fundamentals of Quantum Mechanics for Solid State Electronics and Optics", Cambridge, 2005
- 5. D. M. Kim, "Introductory Quantum Mechanics for Applied Nanotechnology", Wiley, 2015
- 6. D. G. Steel, "Introduction to Quantum Nanotechnology", Oxford, 2021
- 7. V. V. Mitin, D. I. Sementsov, and N. Z. Vagidov, "Quantum Mechanics for Nanostructures", Wiley, 2006

Alternative ways of examining a course in emergency situations

Teacher (full name):	Emmanuel Paspalakis
Contact details:	Email: paspalak@upatras.gr , Telephone: +30 2610 996318
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(25) Please write YES or NO

(26) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(27) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

40. GENERAL					
SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADU	ATE, LEVEL 7			
COURSE CODE	QE6		SEMESTER	WI	NTER (1 st)
COURSE TITLE	ARTIFICIAL IN	TELLIGENCE A	ND APPLICATIO	ONS	
TEACHING ACTIVITIESTEACHINGIf the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.TEACHING HOURS PER WEEK			ECTS CREDITS		
			2		6
Please, add lines if necessary. Teaching the course are described in section 4.	methods and org	anization of			
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AF	REA			
PREREQUISITES:	None				
TEACHING & EXAMINATION LANGUAGE:					
COURSE OFFERED TO ERASMUS STUDENTS:	No				
COURSE URL:	https://eclass.duth.gr/courses/1031593/				

41. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course. After the successful completion of this course, the post-graduate students will be able: To Understand what artificial intelligence is. • To know how to solve problems through solution search techniques and their • most important algorithms. To understand the operation of biological and artificial neural networks (ANNs) • and especially multi-level feed forward ANNs. To know the basic concepts of fuzzy logic and fuzzy systems. To understand how expert systems work. • To know how to solve problems in the above knowledge areas. • By carrying out specialized assignments, the student implements and applies • the basic knowledge of the course to selected problems using specialized educational software. At the end of the course the student will have developed the following skills: Ability to choose the most appropriate method of solving problems that • require the use of computational intelligence techniques. Ability to use and program specialized software to apply artificial neural networks, genetic algorithms and fuzzy systems to problems encountered in various fields of science.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information, ICT Use Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas

Project design and management Equity and Inclusion Respect for the natural environment Sustainability Demonstration of social, professional and moral responsibility and sensitivity to gender issues Critical thinking Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information Autonomous work Working in an international environment Critical thinking Adaptation to new situations

42. COURSE CONTENT

Definitions and applications of artificial/computational intelligence.

Problem representation and solving, solution search techniques, Blind search algorithms. Heuristics and heuristic functions.

Heuristics and guided search algorithms (BestFS, A*, Hill Climbing, Simulated Annealing), Algorithms for game playing (MIN-MAX, AB pruning).

Evolutionary computations (Introduction to genetic algorithms (GA), finding solutions and optimization using GA, applications).

Basic machine learning concepts

Artificial neural networks (Basic concepts in neural computing, biological and artificial neurons, basic ANN structures and models, learning approaches, first learning algorithms (Perceptron and Hebb rules)

Training ANN with Delta rule, Multilayer networks, the back-propagation algorithm and learning factors, other types of ANN.

Introduction to expert systems and inference procedures.

Introduction to fuzzy systems (Fuzzy sets, fuzzy logic, fuzzy relations)

Fuzzy linguistic descriptions and inference (Mamdani and Sugeno types of inference), examples of a complete fuzzy system.

43. LEARNING & TEACHING METHOD	JS - EVALUATION	
TEACHING METHOD	Live distance learning.	
Face to face, Distance learning, etc.	_	
USE OF INFORMATION &	Digital slides	
COMMUNICATIONS TECHNOLOGY	Microsoft Teams platform	
(ICT)	Eclass	
Use of ICT in Teaching, in Laboratory Education, in Communication with students	Matlab and Python program	nming environments
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester
described in detail.		
Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis,	Lectures	26

Study visits, Study / creation, project, creation, project. Etc. The supervised and unsupervised workload per	Assignments during the course	30
activity is indicated here, so that total workload per semester complies to ECTS standards.	Preparations for the oral examinations	34
	Total	150
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	The assessment language is Solving written assignments Reports. Problem solving. Oral examinations.	-
Please indicate all relevant information about the course assessment and how students are informed		

- 1. Michael Negnevitsky. Artificial Intelligence: A guide to intelligent systems, 3rd
- 2. edition, Addison Wesley, 2011
- 3. Nils J. Nilson, Artificial Intelligence, A new Synthesis, Morgan Kaufmann
- 4. Publishers, Inc., 1998
- 5. Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning:
- 6. From Theory to Algorithms, Cambridge University Press, 2014
- 7. Simon Haykin, Neural Networks and Learning Machines, 3rd edition, Pearson
- 8. Education (Prentice Hall), 2009
- 9. Lefteri Tsoukalas, Robert Uhrig, Fuzzy and Neural Approaches in Engineering,
- 10. John Wiley & Sons, 1997

Alternative ways of examining a course in emergency situations

Teacher (full name):	Ioannis Boutalis
Contact details:	e-mail: <u>ybout@ee.duth.gr</u> , tel. +30 25410 79504
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and oral examinations.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(28) Please write YES or NO

(29) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(30) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AN	ND COMPUTE	ER ENGENEERIN	١G	
LEVEL OF STUDIES	POST-GRADUA	TE, LEVEL 7			
COURSE CODE	QE7		SEMESTER	Win	ter
COURSE TITLE	Python Progra	Python Programming and Applications			
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.			TEACHING HOURS PER WEEK		ECTS CREDITS
			2		6
<i>Please, add lines if necessary. Teaching the course are described in section 4.</i>	methods and orgo	anization of			
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	General Know	ledge, Skill D	evelopment		
PREREQUISITES:	None				
TEACHING & EXAMINATION LANGUAGE:					
	No				
COURSE OFFERED TO ERASMUS STUDENTS:	NO				

46. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the basics of python programming
- To write simple and moderate complexity python programs
- To be able to install and use python libraries
- To use jupyter notebooks for running python programs
- To use integrated development environments of python
- To debug python programs
- To collect and analyse data using python
- To use popular quantum information processing libraries of python

Autonomous work

Name the desirable general skills upon successful completion of the module				
Search, analysis and synthesis of data and information,	Project design and management			
ICT Use	Equity and Inclusion			
Adaptation to new situations	Respect for the natural environment			
Decision making	Sustainability			
Autonomous work	Demonstration of social, professional and moral responsibility and			
Teamwork	sensitivity to gender issues			
Working in an international environment	Critical thinking			
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning			
Production of new research ideas				
Search, analysis and synthesis of data and information				
ICT Use				

General Skills

Teamwork Project Design and Management Critical thinking Adaptation to new situations

47. COURSE CONTENT

Introduction to Python

Python Development Tools

Jupyter Notebooks, Python IDE (PyCharm)

Python Libraries for Quantum Information Processing

Python Packages

Lists, Tuples, Dictionaries, Sets

Debugging and Exception Handling

Python Virtual Environments

Python Objects and References

Python Classes

Data Acquisition

Data Analysis

Advanced Topics: Threads, Functools, Lambda Functions

7. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.	
Face to face, Distance learning, etc.	Live distance rearning.	
USE OF INFORMATION &		
COMMUNICATIONS TECHNOLOGY		
(ICT)		
Use of ICT in Teaching, in Laboratory		
Education, in Communication with students		
TEACHING ORGANIZATION	Activity	Workload/semester
The ways and methods of teaching are		
described in detail.	Lectures	26
Lectures, Seminars, Laboratory Exercise, Field		
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical	Bibliographical research	50
Exercise, Art Workshop, Interactive learning,	and study	
Study visits, Study / creation, project, creation,	and study	
project. Etc.	Assignments during the	40
The supervised and unsupervised workload per	course	
activity is indicated here, so that total workload	course	
per semester complies to ECTS standards.	Final assignment and	34
	exam	_
	exam	

	Total	150
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about the course assessment and how students are informed	 The assessment language is Solving written assi Python Programmin Reports. Problem solving. 	gnments.

8. SUGGESTED BIBLIOGRAPHY

1. Makhamisa Senekane, Hands-On Quantum Information Processing with Python, Packt Publishing, 2021

2. C.H. Swaroop, A Byte of Python, <u>https://python.swaroopch.com/</u>

3. Luciano Ramalho, Fluent Python: Clear, Concise, and Effective Programming, 2nd edition, O'Reilly Media, 2022.

4. Mark Lutz, Learning Python, 5th Edition Fifth Edition, Fifth edition, O'Reilly Media, 2013.

5. Al Sweigart, Automate the Boring Stuff with Python, Practical Programming for Total Beginners, 2nd edition, No Starch Press, 2019.

6. Cory Reed, Python Programming for Beginners, Independently published, 2022

Alternative ways of examining a course in emergency situations

Teacher (full name):	Pavlos S. Efraimidis
Contact details:	Email: pefraimi@ee.duth.gr , Telephone: 2541079756
Supervisors: (1)	Νο
Evaluation methods: (2)	Assignments and Final Exam
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(31) Please write YES or NO

(32) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(33) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

48. GENERAL					
SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL A	ELECTRICAL AND COMPUTER ENGINEERING			
LEVEL OF STUDIES	POST-GRADU	ATE, LEVEL 7			
COURSE CODE	QE8		SEMESTER	WIN	ГЕ R (1^{sт})
COURSE TITLE	QUANTUM CO	QUANTUM CONTROL			
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. TEACHING lectures, labs etc. If the ECTS Credits are awarded to the whole HOURS PER course, then please indicate the teaching hours per week and the WEEK corresponding ECTS Credits. ECTS CREE			ECTS CREDITS		
			2		6
Please, add lines if necessary. Teaching the course are described in section 4.	methods and org	anization of			
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AR	REA			
PREREQUISITES:	None				
TEACHING & EXAMINATION LANGUAGE:	English				
COURSE OFFERED TO ERASMUS STUDENTS:	No				
COURSE URL:	https://eclass.duth.gr/courses/				

49. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the difference between coherent and incoherent quantum dynamics
- To understand the probability amplitude approach of describing quantum dynamics
- To understand the density matrix approach for describing quantum dynamics
- To understand the time-evolution operator in quantum mechanics
- To understand resonant quantum tunneling and coherent destruction of tunneling
- To understand the spin 1/2 quantum dynamics and its control by magnetic fields
- To understand in detail the resonant and near-resonant driven coherent dynamics of a two-level quantum system and excitation by π -pulses
- To understand the quantum Zeno effect
- To understand weak field excitation, time-dependent perturbation theory, Fermi's golden rule, and interference control techniques, e.g., phase control techniques in quantum control
- To understand the adiabatic evolution of quantum systems
- To understand the basic quantum dynamics of three-level quantum systems under near resonant excitation
- To understand rapid adiabatic passage and stimulated Raman adiabatic passage
- To understand the concept of shortcut to adiabaticity
- To understand optimal control of quantum dynamics
- To understand basic features from current research in quantum control

General Skills

Name the desirable general skills upon successful completion of the module				
Search, analysis and synthesis of data and information,	Project design and management			
ICT Use	Equity and Inclusion			
Adaptation to new situations	Respect for the natural environment			
Decision making	Sustainability			
Autonomous work	Demonstration of social, professional and moral responsibility and			
Teamwork	sensitivity to gender issues			
Working in an international environment	Critical thinking			
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning			
Production of new research ideas				
Search, analysis and synthesis of data and info	rmation			
Autonomous work				
Working in an international environment				
Critical thinking				
Adaptation to new situations				

50. COURSE CONTENT

Introduction to quantum control

Summary of basic quantum mechanics needed for the course

Incoherent dynamics and Einstein coefficients versus the probability amplitude approach for describing quantum dynamics

Time-evolution operator and density matrix approach for describing quantum dynamics

Quantum tunneling dynamics and coherent destruction of tunneling

Control of spin dynamics by external magnetic fields

Near-resonant excitation of closed and open two-level quantum systems by electromagnetic fields – π -pulse excitation

Decay and dephasing effects in driven two-level quantum systems and the quantum Zeno effect

Weak field excitation, time-dependent perturbation theory, Fermi's golden rule, and phase control (interference control)

Adiabatic evolution for the control of quantum dynamics and rapid adiabatic passage

Dynamics of three-level quantum systems driven near resonant by electromagnetic fields and Stimulated Raman Adiabatic Passage (STIRAP)

Shortcut to adiabaticity (basic idea and examples)

Optimal control of quantum dynamics (basic idea and examples)

51. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.
Face to face, Distance learning, etc.	-
USE OF INFORMATION &	Digital slides
COMMUNICATIONS TECHNOLOGY	Detailed digital notes
(ICT)	Zoom
Use of ICT in Teaching, in Laboratory Education, in Communication with students	Eclass
	Simple computer programs for specific examples of
	control of quantum dynamics

TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester	
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26	
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Bibliographical research and study	60	
project. Etc.	Assignments during the	30	
The supervised and unsupervised workload per activity is indicated here, so that total workload	course		
per semester complies to ECTS standards.	Final assignment and exam	34	
	Total	150	
STUDENT EVALUATION Description of the evaluation process			
	The assessment language is	English.	
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test,	Solving written assignments.		
Short Answer Questions, Essay Development Questions, Problem Solving, Written	Reports.		
Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	Problem solving.		
Please indicate all relevant information about the course assessment and how students are informed			

- 1. B. W. Shore, "Manipulating Quantum Structures using Laser Pulses", Cambridge, 2011
- 2. D. D'Alessandro, "Introduction to Quantum Control and Dynamics", 2nd edition, CRC Press, 2022
- 3. M. Shapiro and P. Brumer "Quantum Control of Molecular Processes", 2nd edition, Wiley, 2012
- 4. S. Cong, "Control of Quantum Systems: Theory and Methods", Wiley, 2014
- 5. S. A. Rice and M. Zhao, "Optical Control of Molecular Dynamics", Wiley, 2000
- 6. E. Paspalakis, I. Thanopulos, and D. Stefanatos, "Notes on Quantum Control", 2022-23 (unpublished, available online)

Alternative ways of examining a course in emergency situations

Teacher (full name):	Emmanuel Paspalakis
Contact details:	Email: paspalak@upatras.gr, Telephone: +30 2610 996318
Supervisors: (1)	No
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(34) Please write YES or NO

(35) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(36) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

53. GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QE9 SEMESTER SPRING (2 nd)			SPRING (2 nd)	
COURSE TITLE	QUANTUM MACHINE LEARNING				
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits course, then please indicate the teach corresponding ECT	istinct parts of the course e.g. s are awarded to the whole hing hours per week and the WEEK				
			2	6	
Please, add lines if necessary. Teaching the course are described in section 4.	Please, add lines if necessary. Teaching methods and organization of the course are described in section 4				
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AF	REA			
PREREQUISITES:	None				
TEACHING & EXAMINATION LANGUAGE:	English				
COURSE OFFERED TO ERASMUS STUDENTS:	No				
COURSE URL:	https://eclass	.duth.gr/cour	ses/1031590/		

54. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To Understand the basic concepts of machine learning..
- To know the basic algorithms of unsupervised machine learning.
- To know the basic algorithms of supervised machine learning.
- To understand the concepts of pattern recognition, classification and classification margins.
- To know how to apply concepts and tools from quantum computing in the applications and the related algorithms for clustering, pattern classification and pattern recognition.
- By carrying out specialized assignments, the student implements and applies the basic knowledge of the course to selected problems using specialized educational software. At the end of the course the student will have developed the following skills:
- Ability to choose the most appropriate method of solving problems that require the use of quantum machine learning techniques.

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information, ICT Use Adaptation to new situations Decision making Project design and management Equity and Inclusion Respect for the natural environment Sustainabilityget

Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas

Demonstration of social, professional and moral responsibility and sensitivity to gender issues Critical thinking Promoting free, creative and inductive reasoning

Search, analysis and synthesis of data and information Autonomous work Working in an international environment Critical thinking Adaptation to new situations

55. COURSE CONTENT

Introduction to preliminary machine learning concepts and mathematics - software platforms Learning theory: Data-Driven Models, Feature Space, Classification, Regression, Supervised and Unsupervised Learning, Generalization Performance, Model Complexity. Data types and Data preprocessing: Data types and variables, Common dataset issues, Missing data imputation, Categorical Encoding, Discretization, Variable Transformations, Handling Outliers, Scaling. Data balancing: Oversampling methods, Undersampling methods. Brief review on quantum mechanics and quantum computations. Unsupervised Machine Learning techniques: Principal Component Analysis, K-Means and K-Medians Clustering, Hierarchical Clustering, Density-Based Clustering, Determining the number of clusters. Supervised Learning: K-Nearest Neighbors, Regression Analysis (Linear regression, Nonlinear Regression. Over-fitting and Regularization). Pattern Recognition and Neural Networks: The Perceptron, Feed-forward Networks, Deep Learning, Issues of Computational Complexity Supervised Learning and Support Vector Machines: Optimal Margin Classifiers, Soft Margins, Nonlinearity and Kernel Functions, Least-Squares Formulation, Generalization Performance, Multiclass Problems, Issues of Computational Complexity. Clustering and Quantum Computing: Quantum Random Access Memory, Calculating Dot Products, Quantum Principal Component Analysis, Quantum K-Means, Quantum K-Medians, Quantum Hierarchical Clustering, **Computational Complexity** Quantum Pattern Recognition: The Quantum Perceptron, Quantum Neural Networks, **Computational Complexity** Quantum Classification: Nearest Neighbors, Support Vector Machines with Grover's

Search, Support Vector Machines with Exponential Speedup, Computational Complexity

56. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.
Face to face, Distance learning, etc.	

USE OF INFORMATION &	Digital slides					
COMMUNICATIONS TECHNOLOGY	Microsoft Teams platform					
(ICT)	Eclass					
Use of ICT in Teaching, in Laboratory Education, in Communication with students	Matlab and Python program	ming environments				
	Activity	Workload/semester				
The ways and methods of teaching are	Activity	Workloudy semester				
described in detail.	Lectures	26				
Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis,						
Tutoring, Internship (Placement), Clinical	Bibliographical research	60				
Exercise, Art Workshop, Interactive learning,	and study					
Study visits, Study / creation, project, creation,						
project. Etc.	Assignments during the	30				
The supervised and unsupervised workload per	course					
activity is indicated here, so that total workload						
per semester complies to ECTS standards.	Preparations for the oral	34				
	examinations					
	Total	150				
STUDENT EVALUATION Description of the evaluation process						
	The assessment language is	English.				
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test,	Solving written assignments.					
Short Answer Questions, Essay Development	Reports.					
Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam,	Problem solving.					
Presentation in audience, Laboratory Report,						
Clinical examination of a patient, Artistic	Oral examinations.					
interpretation, Other/Others						
Please indicate all relevant information about						
the course assessment and how students are						
informed						

- 11. Sergios Theodoridis, Machine Learning A Bayesian and Optimization Perspective, Academic Press (Elsevier), 2015
- **12.** M. P. Deisenroth, A. A. Faisal, C. S. Ong. Mathematics of Machine Learning, Cambridge University Press, 2020
- **13.** Aaron Hertzmann and David Fleet, Machine Learning and Data Mining Lecture Notes, Computer Science Department, University of Toronto, 2012
- **14.** Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press, 2014
- 15. Peter Wittek, Quantum Machine Learning, Academic Press (Elsevier), 2014
- 16. Santanu Pattanayak, Quantum Machine Learning with Python, Apress, 2021.
- 17. Maria Schuld, Francesco Petruccione, Machine Learning with Quantum Computers, Springer, 2021.

Alternative ways of examining a course in emergency situations

Teacher (full name):	Ioannis Boutalis
Contact details:	e-mail: <u>ybout@ee.duth.gr</u> , tel. +30 25410 79504
Supervisors: (1)	No
Evaluation methods: (2)	Students are evaluated via written assignments during the course and oral examinations.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(37) Please write YES or NO

(38) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(39) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QE10 SEMESTER SPRING (2 nd)			RING (2 nd)	
COURSE TITLE	NATURAL AND UNCONVENTIONAL COMPUTING				
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits course, then please indicate the teach corresponding ECT	the whole	TEACHING HOURS PEF WEEK		ECTS CREDITS	
concepting zero ciculo.					
			2		6
			2		6
			2		6
Please, add lines if necessary. Teaching the course are described in section 4.	methods and org	anization of	2		6
	methods and org	-	2		6
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific	-	-	2		6
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AR	-	2		6
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION	SCIENTIFIC AR	-	2		6

59. LEARNING OUTCOMES

Learning Out Please describe the course.	tcomes the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of
After the s	uccessful completion of this course, the post-graduate students will be able:
•	To understand the basic concepts of nature inspired computing, unconventional computing and other types of computing beyond the classic ones and mostly related with quantum computing. To get themselves familiarized with the concepts of future computing, the perspectives but also the advantages delivered that dictate other new types of computing when compared with the ones of today. To understand and know the main principles of future and emergent nanoelectronic devices that could support such types of computing, like memristive nanodevices and graphene nanoelectronic circuits. To familiarize themselves with material-based computing and to understand its pros and cons.
•	To familiarize themselves with chemical computing and to understand its pros and cons.
•	To understand the principles of neuromorphic computing, and to design corresponding models, circuits and systems.
•	To know and handle with appropriate programming languages and tools, the basic computational nature and bio-inspired tools.
•	To know and handle with appropriate programming languages and tools, basic computational tools for unconventional computing like Cellular Automata and Quantum Cellular Automata.

- To combine different types of future and unconventional computation tools in order to find solutions in complex engineering and generic problems.
- To practice with software and hardware tools on the implementation of such computing schemes.

professional and moral responsibility and

and inductive reasoning

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive
Production of new research ideas	

Search, analysis and synthesis of data and information Autonomous work Working in an international environment Critical thinking Adaptation to new situations

60. COURSE CONTENT

Introduction to future and emergent devices, circuits and systems for natural and unconventional computing.

Short presentation of memristive nanoelectronic devices for the implementation of inmemory computing.

Brief review of examples and applications of memristive circuits for unconventional computing and bio-inspired computing (spintronics computing, wave computing, quantum acceleration computing).

Bio-inspired computing Part I: Amoeba and fungi-based computing: Models, Circuits, Experiments and Programming Tools.

Bio-inspired computing Part II: Neuromorphic Computing: Neuromorphic Computing: Models, Circuits, Experiments and Programming Tools.

Bio-inspired computing Part III: Spiking Neural Networks and Oscillation Networks.

Computational tools for Unconventional Computing: Cellular Automata: Software, Hardware and Programming Tools.

Computational tools for Unconventional Computing: Quantum Cellular Automata: Software, and Programming Tools.

Chemical Computing: Models, Circuits, Experiments and Programming Tools.

In materio computing - The Graphene based computing example: Mathematical Tools, Models, Circuits, Experiments and Programming Tools.

Artificial Life Models: Software and Hardware.

Virtual Labs for the presentation of the aforementioned models (software) and circuits (hardware) for natural and unconventional computing.

61. LEARNING & TEACHING METHODS - EVALUATION

61. LEARNING & TEACHING METHOD	DS - EVALUATION			
TEACHING METHOD	Live distance learning.			
Face to face, Distance learning, etc.				
USE OF INFORMATION &	Digital slides			
COMMUNICATIONS TECHNOLOGY	Microsoft Teams platform			
(ICT)	Eclass			
Use of ICT in Teaching, in Laboratory	Matlab, C++ and Python programming environments			
Education, in Communication with students				
	PSpice programming Environment			
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are described in detail.				
Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Bibliographic research & analysis,	Diality of the last second	10		
Tutoring, Internship (Placement), Clinical	Bibliographical research	40		
Exercise, Art Workshop, Interactive learning,	and study			
Study visits, Study / creation, project, creation, project. Etc.				
	Virtual Labs	12		
The supervised and unsupervised workload per				
activity is indicated here, so that total workload	Assignments during the	40		
per semester complies to ECTS standards.	course			
	Preparations for the	32		
	examinations			
	Total	150		
STUDENT EVALUATION				
Description of the evaluation process	The assessment language is	English		
Assessment Language, Assessment Methods,	0 0	0		
Formative or Concluding, Multiple Choice Test,	Solving written assignments			
Short Answer Questions, Essay Development				
Questions, Problem Solving, Written				
Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report,	Problem solving.			
Clinical examination of a patient, Artistic	Oral examinations.			
interpretation, Other/Others				
Please indicate all relevant information about the course assessment and how students are				
informed				

- **1.** M. Dragoman, D. Dragoman, "Atomic-Scale Electronics Beyond CMOS", Springer.
- 2. R. O. Topaloglu, H.-S. Ph. Wong "Beyond-CMOS Technologies for Next Generation Computer Design", Springer, 2019.
- **3.** S. Stepney, A. Adamatzky, "Inspired by Nature", Springer, 2018.
- 4. W. Zhao, G. Prenat, "Spintronics-based Computing", Springer 2015.
- 5. A. Adamatzky, "Collision-based Computing", Springer 2002.
- **6.** A. Adamatzky, "Reaction-Diffusion, Automata: Phenomenology, Localisations, Computation" Springer 2013.
- 7. S. Wolfram, "Cellular Automata and Complexity", CRC Press, 1994.
- **8.** A. Adamatzky, "Computing in Non Linear Media and Automata Collectives", IoP, 2001.
- **9.** L. O. Chua, G. Ch. Sirakoulis, A. Adamatzky "Handbook of Memristor Networks", Springer, 2019.

- **10.** I. Vourkas, G. Ch. Sirakoulis, "Memristor Based Nanoelectronic Computing Circuits and Architectures", Springer, 2016.
- **11.** R. A. Mayers, "Unconventional Computing A Volume in the Encyclopedia of Complexity and Systems Science", 2nd Edition, Springer, 2018.
- **12.** F. Lombardi, "Quantum-Dot Cellular Automata Based Digital Logic Circuits: A Design Perspective", Arthech House Publishers, 2007.
- 13. S. Stepney, S. Rasmussen, M. Amos, "Computational Matter", Springer, 2018.

Alternative ways of examining a course in emergency situations

Teacher (full name):	Georgios Sirakoulis
Contact details:	e-mail: <u>gsirak@ee.duth.gr</u> , tel. +30 25410 79547
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and oral examinations.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(40) Please write YES or NO

(41) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(42) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

63. GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING			
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7			
COURSE CODE	QE11 SEMESTER SPRING			SPRING
COURSE TITLE	LINEAR ALGEBRA FOR QUANTUM MECHANICS			
TEACHING ACT If the ECTS Credits are distributed in di lectures, labs etc. If the ECTS Credits course, then please indicate the teach corresponding ECT	distinct parts of the course e.g. TEACH ts are awarded to the whole ching hours per week and the WEE			
			2	6
Please, add lines if necessary. Teaching the course are described in section 4.				
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AREA			
PREREQUISITES:	None			
TEACHING & EXAMINATION LANGUAGE:	English			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:	https://eclass.duth.gr/courses/1031597/			

64. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To compute eigenvalues and eigenvectors
- To understand vector spaces and subspaces
- To understand linear dependence and independence
- To use inner products and Inner product spaces
- To find best approximation and orthogonal projection
- To apply Gram-Smidt orthonormalization method

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and info	ormation
Autonomous work	
Critical thinking	
Adaptation to new situations	

65. COURSE CONTENT

Eigenvalues and eigenvectors. Matrix diagonalization. Jordan canonical form. Vector spaces and vector subspaces. Linear dependence and linear independence. Basis and dimension of a vector space. Inner products and Inner product spaces. Best approximation. Orthogonal projection. Gram-Smidt orthonormalization. Linear operators and adjoint operators. Operators in inner product spaces. Orthonormal operators.

66. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.			
Face to face, Distance learning, etc. USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory				
Education, in Communication with students TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Bibliographical research and study	44		
project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload	Assignments during the course	40		
per semester complies to ECTS standards.	Final assignment and exam	40		
	Total	150		
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	The assessment language is Solving written assignments Problem solving. Oral Exam.	-		
Please indicate all relevant information about the course assessment and how students are informed				

- 1. K. Hoffman, R. Kunze, Linear Algebra, Prentice-Hall Inc., New Jersey.
- 2. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, New York.

- 3. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York 1991.
- 4. L. C. Andrews, Elementary Partial Differential Equations with Boundary Value Problems, Academic Press Inc..
- 5. H. Sagan, Boundary Eigenalue Problems in Mathematical Physics, Dover Publications, Inc..
- 6. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill Kogakusha, Ltd..

Alternative ways of examining a course in emergency situations

Teacher (full name):	Prof. Christos Schinas
Contact details:	Email: cschinas@ee.duth.gr , Telephone: +30 25410 79763
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(43) Please write YES or NO

(44) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(45) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QE12 SEMESTER SPRING			RING	
	Measurement a	and Char	acterization I	Met	hods for
COURSE TITLE	Devices and Sys	stems			
TEACHING ACT	IVITIES				
If the ECTS Credits are distributed in di	stinct parts of the cou	rse e.g.	TEACHING		
lectures, labs etc. If the ECTS Credits			HOURS PER	2	ECTS CREDITS
course, then please indicate the teach	•	nd the	WEEK		
corresponding ECT	TS Credits.				
conceptinality zer	5 Ci Cuits.				
conceptioning Ler			2		6
			2		6
· · · ·			2		6
Please, add lines if necessary. Teaching		ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4.	methods and organize	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE		ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific	methods and organize	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	methods and organiza	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific	methods and organize	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	methods and organize SCIENTIFIC AREA None	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION	methods and organiza	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION LANGUAGE:	methods and organiza SCIENTIFIC AREA None English	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION	methods and organize SCIENTIFIC AREA None	ation of	2		6
Please, add lines if necessary. Teaching the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION LANGUAGE: COURSE OFFERED TO ERASMUS	methods and organiza SCIENTIFIC AREA None English				6

69. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the basic measurement protocols and error analysis
- To understand the basic theory of measurement instrumentation
- To understand the measurement concept in quantum mechanics
- To understand the basic cryogenic measurement instrumentation
- To understand the measurement techniques and instrumentation for semiconductor, superconductor, spin-based and optical qubit devices

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and inform	mation
Autonomous work	
Critical thinking	

Adaptation to new situations

70. COURSE CONTENT

General Skills

- Measurement theory and error analysis
- Theory of Quantum measurements
- Current vs voltage measurements from cryogenic to high temperatures
- Impedance measurements
- Squid measurements, dc and ac magnetic measurements
- Cryostats and Cryogenic systems
- Electron Paramagnetic Resonance (EPR) measurements

71. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.	
Face to face, Distance learning, etc.		
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education. in Communication with students		
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation, project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload	Bibliographical research and study	44
	Assignments during the course	40
per semester complies to ECTS standards.	Final assignment and exam	40
	Total	150
	TOLAT	150
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	The assessment language is Solving written assignments Problem solving. Oral Exam.	-
Please indicate all relevant information about the course assessment and how students are informed		

- M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information: 10th Anniversary Edition", Cambridge University Press, 2011
- Joachim Stoke, Dieter Suter, Quantum Computing, WILEY-VCH GmbH, 2004
- S. Datta, "Quantum Transport", Cambridge University Press, 2005

Alternative ways of examining a course in emergency situations

Teacher (full name):	Panagiotis Dimitrakis (Coordinator), Michalis Pissas, Ioannis Sanakis, George Mitrikas
Contact details:	E-mail: <u>p.dimitrakis@inn.demokritos.gr</u> , Telephone: T: +30-210-650- 3118
Supervisors: (1)	No
Evaluation methods: (2)	Assignments and Final Exam
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(46) Please write YES or NO

(47) Note down the evaluation methods used by the teacher, e.g.

written assignment or/and exercises

written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(48) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QE13 SEMESTER SPRING			ING	
COURSE TITLE	Advanced To	opics in Qua	intum Compi	uting	and Quantum
COOKSE IIIE	Technologie	S			
TEACHING ACT	IVITIES				
If the ECTS Credits are distributed in di		5	TEACHING		
lectures, labs etc. If the ECTS Credits			HOURS PEF	2	ECTS CREDITS
course, then please indicate the teach		ek and the	WEEK		
corresponding ECT.					
			2		6
Please, add lines if necessary. Teaching the course are described in section 4.	metnoas ana org	anization of			
COURSE TYPE	SCIENTIFIC AR	ΕΛ			
Background, General Knowledge, Scientific	SCIENTIFIC AN				
Area, Skill Development					
PREREQUISITES:	None				
TEACHING & EXAMINATION	English				
LANGUAGE:					
COURSE OFFERED TO ERASMUS	No				
STUDENTS:					
COURSE URL:	https://eclass.duth.gr/courses/				

74. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand the concept of anyons
- To understand knot theory
- To understand topological quantum computation
- To use Green's functions
- To understand quantum transport
- To compute the conductance of quantum structures

General Skills

Name the desirable general skills upon successful completion of the module

Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and inform	nation
Autonomous work	

Critical thinking

Adaptation to new situations

75. COURSE CONTENT

Anyons

Topological quantum computers Topological quantum bits and quantum gates Braiding Surface error correcting codes Quantum transport Spin valve Landauer's formula Green's functions The non-equilibrium Green functions method Nano-conductors Conductance of nano-conductors

76. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD	Live distance learning.			
Face to face, Distance learning, etc.				
COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students				
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester		
described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis,	Lectures	26		
Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Bibliographical research and study	44		
project. Etc. The supervised and unsupervised workload per	Assignments during the course	40		
activity is indicated here, so that total workload per semester complies to ECTS standards.	Final assignment and exam	40		
	Total	150		
STUDENT EVALUATION Description of the evaluation process	The assessment language is	English.		
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development	Solving written assignments Problem solving.	5.		
Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	Oral Exam.			
Please indicate all relevant information about the course assessment and how students are informed				

- **78.** J. K. Pachos, "Introduction to Topological Quantum Computation", Cambridge University Press, 2012.
- **79.** T. D. Stanescu, "Introduction to Topological Quantum Matter & Quantum Computation", CRC Press, 2020
- 80. S. Datta, "Quantum Transport", Cambridge University Press, 2005
- 81. D. G. Duffy, "Green's functions with applications" CRC Press, 2015

Alternative ways of examining a course in emergency situations

Teacher (full name):	Prof. Ioannis Karafyllidis
Contact details:	Email: ykar@ee.duth.gr , Telephone: +30 25410 79548
Supervisors: (1)	Νο
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(49) Please write YES or NO

(50) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(51) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

82. GENERAL					
SCHOOL	SCHOOL OF E	NGINEERING			
DEPARTMENT	ELECTRICAL AND COMPUTER ENGINEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QE14 SEMESTER SPRING (2 ND)				
COURSE TITLE	QUANTUM OPTICS				
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.			TEACHING HOURS PEF WEEK	t E	CTS CREDITS
			2		6
Please, add lines if necessary. Teaching the course are described in section 4.	Please, add lines if necessary. Teaching methods and organization of the course are described in section 4.				
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AF	REA			
PREREQUISITES:	None				
TEACHING & EXAMINATION LANGUAGE:	English				
COURSE OFFERED TO ERASMUS STUDENTS:	No				
COURSE URL:	https://eclass	.duth.gr/cour	ses/		

83. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

After the successful completion of this course, the post-graduate students will be able:

- To understand two-level quantum system dynamics under interaction with a classical electromagnetic field, Rabi oscillations and semi-classical dressed states
- To understand the nonlinear optical response of a two-level quantum system and saturation effects in absorption and dispersion
- To understand nonlinear wave mixing in a two-level quantum system
- To understand coherent population trapping and electromagnetically induced transparency in a three-level quantum system
- To understand the quantization of single mode and multimode electromagnetic fields
- To understand Fock states, coherent states and squeezed states of the electromagnetic field
- To understand quantized light-matter interaction, the Jaynes-Cummings model, and the quantum dressed state picture.
- To understand vacuum Rabi oscillations and collapse and revival.
- To understand the Wigner-Weisskopf theory of spontaneous emission and quantum interference in spontaneous emission.
- To understand resonance fluorescence and the Mollow triplet
- To understand cavity quantum electrodynamics and the behavior of quantum systems in cavities
- To understand basic features from current research in quantum optics

General Skills

General Skins	
Name the desirable general skills upon successful co	ompletion of the module
Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Search, analysis and synthesis of data and info	rmation
Autonomous work	
Working in an international environment	
Critical thinking	

Adaptation to new situations

84. COURSE CONTENT

Summary of quantum mechanics issues needed for the course, including the different pictures of quantum mechanics and the quantum properties of the harmonic oscillator
Two-level quantum system dynamics under interaction with a classical electromagnetic field, Rabi oscillations, and semiclassical dressed states
Nonlinear optical response of a two-level quantum system and saturation effects in absorption and dispersion
Nonlinear wave mixing in a two-level quantum system
Coherent population trapping and electromagnetically induced transparency in a three- level quantum system
Quantization of single mode and multimode electromagnetic fields
Fock states and coherent states of the electromagnetic field and their properties
Squeezed states of the electromagnetic field and their properties
Quantized light-matter interaction, the Jaynes-Cummings model, and the quantum dressed-state picture
Interaction of the two-level quantum system with quantized electromagnetic field - quantum Rabi oscillations, vacuum Rabi oscillations, and collapse and revival
Wigner-Weisskopf theory of spontaneous emission and quantum interference effects in spontaneous emission
Resonance fluorescence and the Mollow triplet
Cavity quantum electrodynamics and the behavior of quantum systems in cavities

85. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Live distance learning.
USE OF INFORMATION &	Detailed digital notes
COMMUNICATIONS TECHNOLOGY	Eclass

(ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	Zoom Simple computer programs for specific examples of quantum optical effects			
TEACHING ORGANIZATION The ways and methods of teaching are	Activity	Workload/semester		
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation, project. Etc. The supervised and unsupervised workload per activity is indicated here, so that total workload	Bibliographical research and study	60		
	Assignments during the course	30		
per semester complies to ECTS standards.	Final assignment and exam	34		
	Total	150		
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about	The assessment language is Solving written assignments Reports. Problem solving.	-		
the course assessment and how students are informed				

- 1. P. Meystre and M. Sargent III, "Elements of Quantum Optics", 4th edition, Springer, 2007
- 2. C. C. Gerry and P. L. Knight, "Introductory Quantum Optics", Cambridge, 2005
- 3. G. Grynberg, A. Aspect, and C. Fabre, "Introduction to Quantum Optics", Cambridge, 2010
- 4. G. S. Agarwal, "Quantum Optics", Cambridge, 2013
- 5. M. S. Zubairy and M. O. Scully, "Quantum Optics", Cambridge, 1997
- 6. M. Orszag, "Quantum Optics", 3rd edition, Springer, 2016
- 7. S. C. Rand, "Lectures on Light: Nonlinear and Quantum Optics Using the Density Matrix", 2nd edition, Oxford, 2016
- 8. R. Loudon, "The Quantum Theory of Light", 3rd edition, Oxford, 2000

Alternative ways of examining a course in emergency situations

Teacher (full name):	Emmanuel Paspalakis
Contact details:	Email: paspalak@upatras.gr, Telephone: +30 2610 996318
Supervisors: (1)	No
Evaluation methods: (2)	Students are evaluated via written assignments during the course and a written final assignment.
Implementation Instructions: (3)	The course is given via live distance learning and emergency situations will not affect lectures and student evaluation.

(52) Please write YES or NO

(53) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(54) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of **written assignment and / or exercises:** the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and **any other necessary** information.

b) in case of **oral examination with distance learning methods:** the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of **written examination with distance learning methods**: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

SCHOOL	SCHOOL OF ENGINEERING				
DEPARTMENT	ELECTRICAL AND COMPUTER ENGENEERING				
LEVEL OF STUDIES	POST-GRADUATE, LEVEL 7				
COURSE CODE	QMD SEMESTER 3 rd				
COURSE TITLE	MSc. Dissert	ation			
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.		TEACHING HOURS PER ECTS CRI WEEK		ECTS CREDITS	
, , ,					
			-		30
			-		30
Please, add lines if necessary. Teaching the course are described in section 4.	methods and orgo	anization of	-		30
	methods and orga	-	-		30
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific		EA	- t least four (4)	cou	
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development	SCIENTIFIC AR	EA	- It least four (4)	cou	
the course are described in section 4. COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES: TEACHING & EXAMINATION	SCIENTIFIC ARI	EA	- it least four (4)	cou	

88. LEARNING OUTCOMES

Learning Outcomes Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.		
After the succe	essful completion the MSc. Dissertation, the post-graduate students will be able:	
• (Jse quantum simulators	
• F	Program quantum computers	
• [Develop novel quantum algorithms	
• l	Understand and use quantum communication technologies	
Apply quantum computers to machine learning		
• [Design qubit devices and quantum circuits	

Understand and use quantum key distribution protocols

General Skills

General Skills	
Name the desirable general skills upon successful co	ompletion of the module
Search, analysis and synthesis of data and information,	Project design and management
ICT Use	Equity and Inclusion
Adaptation to new situations	Respect for the natural environment
Decision making	Sustainability
Autonomous work	Demonstration of social, professional and moral responsibility and
Teamwork	sensitivity to gender issues
Working in an international environment	Critical thinking
Working in an interdisciplinary environment	Promoting free, creative and inductive reasoning
Production of new research ideas	
Convels, every using and everytheration of slotter and infe	

Search, analysis and synthesis of data and information

Autonomous work Critical thinking Adaptation to new situations Project design and management Promoting free, creative and inductive reasoning Promoting free, creative and inductive reasoning

89. COURSE CONTENT

The content of the MSc. Dissertation will be relevant to the MSc. Courses and will be structured by the supervisors in collaboration with the post-graduate students.

90. LEARNING & TEACHING METHO	DS - EVALUATION	
TEACHING METHOD	Bi-weekly communication o	f the post-graduate
Face to face, Distance learning, etc.	students with their supervis	ors.
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students		
TEACHING ORGANIZATION	Activity	Workload/semester
The ways and methods of teaching are described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Bibliographic research & analysis,	Bibliographical research and state of the art	70
Tutoring, Internship (Placement), Clinical Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Study	80
project. Etc.	Research work	500
The supervised and unsupervised workload per activity is indicated here, so that total workload per semester complies to ECTS standards.	Writing of the MSc. Dissertation	80
	Preparation for the public presentation of the MSc. Dissertation	20
	Total	750
STUDENT EVALUATION Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Presentation in audience, Laboratory Report, Clinical examination of a patient, Artistic interpretation, Other/Others	The assessment language is English. Oral Exam. Written Assignment, Essay / Report, Presentation in audience	
Please indicate all relevant information about the course assessment and how students are informed		

91. SUGGESTED BIBLIOGRAPHY

The supervisors will suggest bibliography for each MSc. Dissertation

Alternative ways of examining a course in emergency situations

Teacher (full name):	Instructors
Contact details:	
Supervisors: (1)	Yes
Evaluation methods: (2)	Students are evaluated via public oral presentation of their MSc. Dissertation, which in case of emergency will be done using the Microsoft Teams or Zoom platforms.
Implementation Instructions: (3)	The supervisors and the post-graduate students will communicate bi- weekly using the Microsoft Teams or Zoom platforms.

(55) Please write YES or NO

(56) Note down the evaluation methods used by the teacher, e.g.

- written assignment or/and exercises
- > written or oral examination with distance learning methods, provided that the integrity and reliability of the examination are ensured.

(57) In the Implementation Instructions section, the teacher notes down clear instructions to the students:

a) in case of written assignment and / or exercises: the deadline (e.g. the last week of the semester), the means of submission, the grading system, the grade percentage of the assignment in the final grade and any other necessary

information.

b) in case of oral examination with distance learning methods: the instructions for conducting the examination (e.g. in groups of X people), the way of administration of the questions to be answered, the distance learning platforms to be used, the technical means for the implementation of the examination (microphone, camera, word processor, internet connection, communication platform), the hyperlinks for the examination, the duration of the exam, the grading system, the percentage of the oral exam in the final grade, the ways in which the inviolability and reliability of the exam are ensured and any other necessary information.

c) in case of written examination with distance learning methods: the way of administration of the questions to be answered, the way of submitting the answers, the duration of the exam, the grading system, the percentage of the written exam of the exam in the final grade, the ways in which the integrity and reliability of the exam are ensured and any other necessary information.

